

 [image: baikal]

A graph-based functional API for building complex scikit-learn pipelines

[image: docs]
 [https://baikal.readthedocs.io][image: build status]
 [https://circleci.com/gh/alegonz/baikal/tree/master][image: coverage]
 [https://codecov.io/gh/alegonz/baikal][image: Language grade: Python]
 [https://lgtm.com/projects/g/alegonz/baikal/context:python][image: code style]
 [https://github.com/psf/black][image: latest release]
 [https://pypi.org/project/baikal][image: license]
 [https://github.com/alegonz/baikal/blob/master/LICENSE]baikal is written in pure Python. It supports Python 3.5 and above.

Note: baikal is still a young project and there might be backward incompatible changes.
The next development steps and backwards-incompatible changes are announced and discussed
in this issue [https://github.com/alegonz/baikal/issues/16]. Please subscribe to it if
you use baikal.

What is baikal?

baikal is a graph-based, functional API for building complex machine learning pipelines
of objects that implement the scikit-learn API [https://scikit-learn.org/stable/developers/contributing.html#different-objects].
It is mostly inspired on the excellent Keras [https://keras.io] API for Deep Learning,
and borrows a few concepts from the TensorFlow [https://www.tensorflow.org] framework
and the (perhaps lesser known) graphkit [https://github.com/yahoo/graphkit] package.

baikal aims to provide an API that allows to build complex, non-linear machine learning
pipelines that look like this:

[image: multiple_input_nonlinear_pipeline_example_diagram]
with code that looks like this:

x1 = Input()
x2 = Input()
y_t = Input()

y1 = ExtraTreesClassifier()(x1, y_t)
y2 = RandomForestClassifier()(x2, y_t)
z = PowerTransformer()(x2)
z = PCA()(z)
y3 = LogisticRegression()(z, y_t)

ensemble_features = Stack()([y1, y2, y3])
y = SVC()(ensemble_features, y_t)

model = Model([x1, x2], y, y_t)

What can I do with it?

With baikal you can

	build non-linear pipelines effortlessly

	handle multiple inputs and outputs

	add steps that operate on targets as part of the pipeline

	nest pipelines

	use prediction probabilities (or any other kind of output) as inputs to other steps in the pipeline

	query intermediate outputs, easing debugging

	freeze steps that do not require fitting

	define and add custom steps easily

	plot pipelines

All with boilerplate-free, readable code.

Why baikal?

The pipeline above (to the best of the author’s knowledge) cannot be easily built using
scikit-learn’s composite estimators API [https://scikit-learn.org/stable/modules/compose.html#pipelines-and-composite-estimators]
as you encounter some limitations:

	It is aimed at linear pipelines

	You could add some step parallelism with the ColumnTransformer [https://scikit-learn.org/stable/modules/compose.html#columntransformer-for-heterogeneous-data]
API, but this is limited to transformer objects.

	Classifiers/Regressors can only be used at the end of the pipeline.

	This means we cannot use the predicted labels (or their probabilities) as features
to other classifiers/regressors.

	You could leverage mlxtend’s StackingClassifier [http://rasbt.github.io/mlxtend/user_guide/classifier/StackingClassifier/#stackingclassifier]
and come up with some clever combination of the above composite estimators
(Pipelines, ColumnTransformers, and StackingClassifiers, etc), but you might
end up with code that feels hard-to-follow and verbose.

	Cannot handle multiple input/multiple output models.

Perhaps you could instead define a big, composite estimator class that integrates each of
the pipeline steps through composition. This, however, most likely will require

	writing big __init__ methods to control each of the internal steps’ knobs;

	being careful with get_params and set_params if you want to use, say, GridSearchCV;

	and adding some boilerplate code if you want to access the outputs of intermediate
steps for debugging.

By using baikal as shown in the example above, code can be more readable, less verbose
and closer to our mental representation of the pipeline. baikal also provides an API
to fit, predict with, and query the entire pipeline with single commands.

Contents:

	Installation

	User guide

	Examples

	API Reference

	Contributing guidelines

	Changelog

	License

Installation

To install the latest released version from PyPI:

pip install baikal

If you wish to install the latest development version, you can do so with:

pip install git+https://github.com/alegonz/baikal.git@master#egg=baikal

Requirements

	numpy

User guide

Key concepts

The baikal API introduces three basic elements:

	Step: Steps are the building blocks of the API. Conceptually similar to TensorFlow’s
operations and Keras layers, each Step is a unit of computation (e.g. PCA, Logistic Regression)
that take the data from preceding Steps and produce data to be used by other Steps further
in the pipeline. Steps are defined by combining the Step mixin class with a base class
that implements the scikit-learn API. This is explained in more detail below.

	DataPlaceholder: The inputs and outputs of Steps. If Steps are like TensorFlow
operations or Keras layers, then DataPlaceHolders are akin to tensors. Don’t be misled
though, DataPlaceholders are just minimal, low-weight auxiliary objects whose main
purpose is to keep track of the input/output connectivity between steps, and serve as
the keys to map the actual input data to their appropriate Step. They are not arrays/tensors,
nor contain any shape/type information whatsoever.

	Model: A Model is a network (more precisely, a directed acyclic graph) of Steps,
and it is defined from the input/output specification of the pipeline. Models have fit
and predict routines that, together with graph-based engine, allow the automatic (feed-forward)
computation of each of the pipeline steps when fed with data.

Quick-start guide

Without further ado, here’s a short example of a simple SVC model built with baikal:

import sklearn.svm
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

from baikal import make_step, Input, Model

1. Define a step
SVC = make_step(sklearn.svm.SVC)

2. Build the model
x = Input()
y_t = Input()
y = SVC(C=1.0, kernel="rbf", gamma=0.5)(x, y_t)
model = Model(x, y, y_t)

3. Train the model
dataset = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(
 dataset.data, dataset.target, random_state=0
)

model.fit(X_train, y_train)

4. Use the model
y_test_pred = model.predict(X_test)

API walkthrough

As shown in the short example above, the baikal API consists of four basic steps:

	1. Define the steps

	2. Build the model

	3. Train the model

	4. Use the model

Let’s take a look at each of them in detail. Full examples can be found in the project’s
examples folder.

1. Define the steps

A step is defined very easily, just feed the provided make_step function with the
class you want to make a step from:

import sklearn.linear_model
from baikal import make_step

LogisticRegression = make_step(sklearn.linear_model.LogisticRegression)

You can make a step from any class you like, so long that class implements the
scikit-learn API [https://scikit-learn.org/stable/developers/contributing.html#different-objects].

What this function is doing under the hood, is to combine the given class with the Step
mixin class. The Step mixin, among other things, endows the given class with a
__call__ method, making the class callable on the outputs (DataPlaceholder objects)
of previous steps. If you prefer to do this manually, you only have to:

	Define a class that inherits from both the Step mixin and the class you wish to
make a step of (in that order!).

	In the class __init__, call super().__init__(...) and pass the appropriate
step parameters.

For example, to make a step for sklearn.linear_model.LogisticRegression we do:

import sklearn.linear_model
from baikal import Step

The order of inheritance is important!
class LogisticRegression(Step, sklearn.linear_model.LogisticRegression):
 def __init__(self, name=None, n_outputs=1, **kwargs):
 super().__init__(name=name,n_outputs=n_outputs,**kwargs)

Other steps are defined similarly (omitted here for brevity).

baikal can also handle steps with multiple input/outputs/targets. The base class may
implement a predict/transform method (the compute function) that take multiple
inputs and returns multiple outputs, and a fit method that takes multiple inputs and targets
(native scikit-learn classes at present take one input, return one output, and take at
most one target). In this case, the input/target arguments are expected to be a list of
(typically) array-like objects, and the compute function is expected to return a list of
array-like objects. For example, the base class may implement the methods like this:

class SomeClass(BaseEstimator):
 ...
 def predict(self, Xs):
 X1, X2 = Xs
 # use X1, X2 to calculate y1, y2
 return y1, y2

 def fit(self, Xs, ys):
 (X1, X2), (y1, y2) = Xs, ys
 # use X1, X2, y1, y2 to fit the model
 return self

2. Build the model

Once we have defined the steps, we can make a model like shown below. First, you create
the initial step, that serves as the entry-point to the model, by calling the Input
helper function. This outputs a DataPlaceholder representing one of the inputs to the
model. Then, all you have to do is to instantiate the steps and call them on the outputs
(DataPlaceholders from previous steps) as you deem appropriate. Finally, you instantiate
the model with the inputs, outputs and targets (also DataPlaceholders) that specify your
pipeline.

This style should feel familiar to users of Keras.

Note that steps that require target data (like ExtraTreesClassifier, RandomForestClassifier,
LogisticRegression and SVC) are called with two arguments. These arguments correspond
to the inputs (e.g. x1, x2) and targets (e.g. y_t) of the step. These targets
are specified to the Model at instantiation via the third argument. baikal pipelines
are made of complex, heterogenous, non-differentiable steps (e.g. a whole RandomForestClassifier,
with its own internal learning algorithm), so there’s no some magic automatic differentiation
that backpropagates the target information from the outputs to the appropriate steps, so
we must specify which step needs which targets directly.

from baikal import Input, Model
from baikal.steps import Stack

Assume the steps below were already defined
x1 = Input()
x2 = Input()
y_t = Input()

y1 = ExtraTreesClassifier()(x1, y_t)
y2 = RandomForestClassifier()(x2, y_t)
z = PowerTransformer()(x2)
z = PCA()(z)
y3 = LogisticRegression()(z, y_t)

ensemble_features = Stack()([y1, y2, y3])
y = SVC()(ensemble_features, y_t)

model = Model([x1, x2], y, y_t)

You can call the same step on different inputs and targets to reuse the step (similar to
the concept of shared layers and nodes in Keras), and specify a different compute_func/trainable
configuration on each call. This is achieved via “ports”: each call creates a new port
and associates the given configuration to it. You may access the configuration at each
port using the get_*_at(port) methods.

(*) Steps are called on and output DataPlaceholders. DataPlaceholders are produced and
consumed exclusively by Steps, so you do not need to instantiate these yourself.

3. Train the model

Now that we have built a model, we are ready to train it. The model also follows the
scikit-learn API, as it has a fit method:

model.fit(X=[X1_train, X2_train], y=y_train)

	
baikal.Model.fit(self, X, y=None, **fit_params)

	Trains the model on the given input and target data.

The model will automatically propagate the data through the pipeline and
fit any internal steps that require training.

	Parameters

	
	X – Input data (independent variables). It can be either of:

	A single array-like object (in the case of a single input)

	A list of array-like objects (in the case of multiple inputs)

	A dictionary mapping DataPlaceholders (or their names) to
array-like objects. The keys must be among the inputs passed
at instantiation.

	y – Target data (dependent variables) (optional). It can be either of:

	None (in the case all steps are either non-trainable and/or
unsupervised learning steps)

	A single array-like object (in the case of a single target)

	A list of array-like objects(in the case of multiple targets)

	A dictionary mapping target DataPlaceholders (or their names) to
array-like objects. The keys must be among the targets passed
at instantiation.

Targets required by steps that were set as non-trainable might
be omitted.

	fit_params – Parameters passed to the fit method of each model step, where each
parameter name has the form <step-name>__<parameter-name>.

4. Use the model

To predict with the model, use the predict method and pass it the input data like you
would for the fit method. The model will automatically propagate the inputs through
all the steps and produce the outputs specified at instantiation.

y_test_pred = model.predict([X1_test, X2_test])

This also works:
y_test_pred = model.predict({x1: X1_test, x2: X2_test})

	
baikal.Model.predict(self, X, output_names=None)

	Predict by applying the model on the given input data.

	Parameters

	
	X – Input data. It follows the same format as in the fit method.

	output_names – Names of required outputs (optional). You can specify any final or
intermediate output by passing the name of its associated data
placeholder. This is useful for debugging. If not specified, it will
return the outputs specified at instantiation.

	Returns

	array-like or list of array-like – The computed outputs.

Models are query-able. That is, you can request other outputs other than those specified
at model instantiation. This allows querying intermediate outputs and ease debugging.
For example, to get both the output from PCA and the ExtraTreesClassifier:

outs = model.predict(
 [X1_test, X2_test], output_names=["ExtraTreesClassifier_0:0/0", "PCA_0:0/0"]
)

You don’t need to pass inputs that are not required to compute the queried output.
For example, if we just want the output of PowerTransformer:

outs = model.predict({x2: X2_data}, output_names="PowerTransformer_0:0/0")

Models are also nestable. In fact, Models are steps, too. This allows composing smaller
models into bigger ones, like so:

Assume we have two previously built complex
classifier models, perhaps loaded from a file.
submodel1 = ...
submodel2 = ...

Now we make an stacked classifier from both submodels
x = Input()
y_t = Input()
y1 = submodel1(x)
y2 = submodel2(x, y_t)
z = Stack()([y1, y2])
y = SVC()(z, y_t)
bigmodel = Model(x, y, y_t)

Generalizations introduced by the API

The baikal API generalizes scikit-learn estimators and pipelines in several ways:

Steps can be combined into non-linear pipelines. That is,

	steps may be parallel,

	feed-forward connections my exist between non-consecutive steps,

	an input of the pipeline is not necessarily taken from the first step,

	an output of the pipeline is not necessarily produced from the last step.

Steps can take multiple inputs and produce multiple outputs. This, for example, is
useful for defining steps for aggregating, concatenating or splitting arrays; building
models that take multi-modal data, for example and input for an image, and an input for
tabular data; and building models with mixed classification/regression outputs.

Steps can lack a fit method. Models allow steps that have no fit method
(a.k.a. stateless estimators). At training time, such steps will omit their own training
and simply do inference on their inputs to produce the outputs required by successive
steps.

Also, the Model graph engine will, for each step, pass only the arguments associated to
the inputs and targets that were specified for that step. So, if you (naturally) didn’t
specify any targets for an unsupervised step, then that step can safely define a fit
method with a fit(X) signature. This avoids having to define methods with a
misleading fit(X, y=None) signature if the step either does not require target data
or does not require a fit method at all, improving the readability of estimator classes.

In short, this means steps can

	omit defining fit for stateless steps,

	define fit(X) for unsupervised steps,

	define fit(X, y) for supervised and semi-supervised steps.

Steps can specify any function for inference. Canonical scikit-learn estimators
typically define either a predict or a transform method as their function for
inference, and the Pipeline API [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html] only admits these two. More complex
models, however, may require estimators that do other kinds of computations such as
prediction probabilities, the decision function, or the leaf indices of decision tree
predictions. To allow this, the Step API generalizes these as “compute functions” and
provides a compute_func argument that can be used to specify predict_proba ,
decision_function , apply or any other function for inference.

Steps can be frozen. This is done via a trainable boolean flag and allows you
to skip steps during training time. This is useful if you have a pre-trained estimator
that you would like to reuse in another model without re-training it when training the
whole model.

Steps can specify special behavior at training time. Some estimators define special
fit_transform or fit_predict methods that do both training and inference in a
single swoop. Usually, such methods are meant to leverage implementations that are more
efficient than calling fit and predict/transform separately, or meant for
transductive estimators as such estimators don’t allow separate training and inference
regimes. From the perspective of the execution of a pipeline at training time, where
training and inference (to produce the outputs required by successor steps) is done for
each step in tandem, these methods can be generalized to provide a means to control
these stages jointly and define special behaviors. This can be useful, for example, for
implementing training protocols such as that of stacked classifiers, where the
classifiers in the first stage are trained on the input data, but instead compute
out-of-fold predictions for the next stage in the stack. The Step API provides this via
a fit_compute_func argument which, if specified, will be used by the graph execution
instead of using fit and compute_func separately.

Steps can be shared. Steps can be called on different inputs and targets (similar to
the concept of shared layers and nodes in Keras), and specify a different behavior (that
is, a specific configuration of compute_func, fit_compute_func and trainable),
on each call. The mapping between inputs/targets and the behavior is achieved via
“ports”: each call creates a new port on the step and associates the given configuration
to the inputs/targets the step was called on. The Model graph engine will then use the
appropriate configuration on each set of inputs and targets.

Shared steps allow reusing a step and its learned parameters on different inputs. For
example, this is particularly useful for reusing learned transformations on targets.
Also, this useful for reusing steps of stateless estimators to apply the same
computation (e.g. casting data types, dropping dimensions) on several inputs.

Utilities

Persisting the model

Like native scikit-learn objects, models can be serialized with pickle or joblib without
any extra setup:

import joblib
joblib.dump(model, "model.pkl")
model_reloaded = joblib.load("model.pkl")

Keep in mind, however, the security and maintainability limitations [https://scikit-learn.org/stable/modules/model_persistence.html#security-maintainability-limitations]
of these formats.

scikit-learn wrapper for GridSearchCV

Currently, baikal also provides a wrapper utility class that allows models to used
in scikit-learn’s GridSearchCV API [https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn-model-selection-gridsearchcv]. Below there’s a code snippet
showing its usage. It follows the style of Keras’ own wrapper.

See Tune a model with GridSearchCV for an example script of this utility.

A future release of baikal plans to include a custom GridSearchCV API, based on
the original scikit-learn implementation, that can handle baikal models natively, avoiding
a couple of gotchas with the current wrapper implementation (mentioned below).

1. Define a function that returns your baikal model
def build_fn():
 x = Input()
 y_t = Input()
 h = PCA(random_state=random_state, name="pca")(x)
 y = LogisticRegression(random_state=random_state, name="classifier")(h, y_t)
 model = Model(x, y, y_t)
 return model

2. Define a parameter grid
- keys have the [step-name]__[parameter-name] format, similar to sklearn Pipelines
- You can also search over the steps themselves using [step-name] keys
param_grid = [
 {
 "classifier": [LogisticRegression()],
 "classifier__C": [0.01, 0.1, 1],
 "pca__n_components": [1, 2, 3, 4],
 },
 {
 "classifier": [RandomForestClassifier()],
 "classifier__n_estimators": [10, 50, 100],
 },
]

3. Instantiate the wrapper
sk_model = SKLearnWrapper(build_fn)

4. Use GridSearchCV as usual
gscv_baikal = GridSearchCV(sk_model, param_grid)
gscv_baikal.fit(x_data, y_data)
best_model = gscv_baikal.best_estimator_.model

Currently there are a couple of gotchas:

	The cv argument of GridSearchCV will default to KFold if the estimator is a
baikal Model, so you have to specify an appropriate splitter directly if you need another
splitting scheme.

	GridSearchCV cannot handle models with multiple inputs/outputs. A way to work around
this is to split the input data and merge the outputs within the model.

Plotting your model

The baikal package includes a plot utility.

from baikal.plot import plot_model
plot_model(model, filename="model.png")

In order to use the plot utility, you need to install pydot [https://pypi.org/project/pydot] and
graphviz [https://graphviz.gitlab.io].

For the example above, it produces this:

[image: "An example of a multiple-input, nonlinear pipeline rendered with the plot utility"]

Examples

Stacked classifiers (naive protocol)

Similar to the the example in the quick-start guide, (a naive) stacks of classifiers
(or regressors) can be built like shown below. Note that you can specify the function
the step should use for computation, in this case compute_func='predict_proba' to
use the label probabilities as the features of the meta-classifier.

x = Input()
y_t = Input()
y_p1 = LogisticRegression()(x, y_t, compute_func="predict_proba")
y_p2 = RandomForestClassifier()(x, y_t, compute_func="predict_proba")
predict_proba returns arrays whose columns sum to one, so we drop one column
drop_first_col = Lambda(lambda array: array[:, 1:])
y_p1 = drop_first_col(y_p1)
y_p2 = drop_first_col(y_p2)
ensemble_features = ColumnStack()([y_p1, y_p2])
y_p = ExtraTreesClassifier()(ensemble_features, y_t)

model = Model(x, y_p, y_t)

import sklearn.datasets
import sklearn.ensemble
import sklearn.linear_model
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split

from baikal import Input, Model, make_step
from baikal.plot import plot_model
from baikal.steps import ColumnStack, Lambda

------- Define steps
LogisticRegression = make_step(sklearn.linear_model.LogisticRegression)
RandomForestClassifier = make_step(sklearn.ensemble.RandomForestClassifier)
ExtraTreesClassifier = make_step(sklearn.ensemble.ExtraTreesClassifier)

------- Load dataset
data = sklearn.datasets.load_breast_cancer()
X, y_p = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(
 X, y_p, test_size=0.2, random_state=0
)

------- Build model
x = Input()
y_t = Input()
y_p1 = LogisticRegression(solver="liblinear", random_state=0)(
 x, y_t, compute_func="predict_proba"
)
y_p2 = RandomForestClassifier(random_state=0)(x, y_t, compute_func="predict_proba")
predict_proba returns arrays whose columns sum to one, so we drop one column
drop_first_col = Lambda(lambda array: array[:, 1:])
y_p1 = drop_first_col(y_p1)
y_p2 = drop_first_col(y_p2)
stacked_features = ColumnStack()([y_p1, y_p2])
y_p = ExtraTreesClassifier(random_state=0)(stacked_features, y_t)

model = Model(x, y_p, y_t)
plot_model(model, filename="stacked_classifiers_naive.png", dpi=96)

------- Train model
model.fit(X_train, y_train)

------- Evaluate model
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

print("F1 score on train data:", f1_score(y_train, y_train_pred))
print("F1 score on test data:", f1_score(y_test, y_test_pred))

Stacked classifiers (standard protocol)

In the naive stack above, each classifier in the 1st level will calculate the predictions
for the 2nd level using the same data it used for fitting its parameters. This is prone
to overfitting as the 2nd level classifier will tend to give more weight to an overfit
classifier in the 1st level. To avoid this, the standard protocol recommends that, during
fit, the 1st level classifiers are still trained on the original data, but instead they
provide out-of-fold (OOF) predictions to the 2nd level classifier. To achieve this special
behavior, we leverage the fit_compute_func API: we define a fit_predict method
that does the fitting and the OOF predictions, and add it as a method of the 1st level
classifiers (LogisticRegression and RandomForestClassifier, in the example) when
making the steps. baikal will then detect and use this method during fit.

from sklearn.model_selection import cross_val_predict

def fit_predict(self, X, y):
 self.fit(X, y)
 return cross_val_predict(self, X, y, method="predict_proba")

attr_dict = {"fit_predict": fit_predict}

1st level classifiers
LogisticRegression = make_step(sklearn.linear_model.LogisticRegression, attr_dict)
RandomForestClassifier = make_step(sklearn.ensemble.RandomForestClassifier, attr_dict)

2nd level classifier
ExtraTreesClassifier = make_step(sklearn.ensemble.ExtraTreesClassifier)

The rest of the stack is built exactly the same as in the naive example.

import sklearn.datasets
import sklearn.ensemble
import sklearn.linear_model
from sklearn.metrics import f1_score
from sklearn.model_selection import cross_val_predict, train_test_split

from baikal import Input, Model, make_step
from baikal.plot import plot_model
from baikal.steps import ColumnStack, Lambda

------- Define steps
During fit, the 1st level classifiers must be trained on the original data, but must
provide out-of-fold (OOF) predictions to the 2nd level classifier. To achieve this we
leverage the fit_compute_func API to configure this behavior. In this case we define
a fit_predict method that does the fitting and the OOF predictions, and add it as a
method of the 1st level classifiers (LogisticRegression and RandomForestClassifier)
when making the steps. baikal will then detect and use this method during fit.

def fit_predict(self, X, y):
 self.fit(X, y)
 return cross_val_predict(self, X, y, method="predict_proba")

attr_dict = {"fit_predict": fit_predict}
LogisticRegression = make_step(sklearn.linear_model.LogisticRegression, attr_dict)
RandomForestClassifier = make_step(sklearn.ensemble.RandomForestClassifier, attr_dict)
ExtraTreesClassifier = make_step(sklearn.ensemble.ExtraTreesClassifier)

------- Load dataset
data = sklearn.datasets.load_breast_cancer()
X, y_p = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(
 X, y_p, test_size=0.2, random_state=0
)

------- Build model
The model is built similarly as the naive case. The difference is that during fit
baikal will detect and use the fit_predict method above.
x = Input()
y_t = Input()
y_p1 = LogisticRegression(solver="liblinear", random_state=0)(
 x, y_t, compute_func="predict_proba"
)
y_p2 = RandomForestClassifier(random_state=0)(x, y_t, compute_func="predict_proba")
predict_proba returns arrays whose columns sum to one, so we drop one column
drop_first_col = Lambda(lambda array: array[:, 1:])
y_p1 = drop_first_col(y_p1)
y_p2 = drop_first_col(y_p2)
stacked_features = ColumnStack()([y_p1, y_p2])
y_p = ExtraTreesClassifier(random_state=0)(stacked_features, y_t)

model = Model(x, y_p, y_t)
plot_model(model, filename="stacked_classifiers_standard.png", dpi=96)

------- Train model
model.fit(X_train, y_train)

------- Evaluate model
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

print("F1 score on train data:", f1_score(y_train, y_train_pred))
print("F1 score on test data:", f1_score(y_test, y_test_pred))

Classifier chain

The API also lends itself for more interesting configurations, such as that of
classifier chains [https://en.wikipedia.org/wiki/Classifier_chains]. By leveraging the API and Python’s own
control flow, a classifier chain model can be built as follows:

x = Input()
y_t = Input()
order = list(range(n_targets))
random.shuffle(order)

squeeze = Lambda(np.squeeze, axis=1)

ys_t = Split(n_targets, axis=1)(y_t)
ys_p = []
for j, k in enumerate(order):
 x_stacked = ColumnStack()([x, *ys_p[:j]])
 ys_t[k] = squeeze(ys_t[k])
 ys_p.append(LogisticRegression()(x_stacked, ys_t[k]))

ys_p = [ys_p[order.index(j)] for j in range(n_targets)]
y_p = ColumnStack()(ys_p)

model = Model(x, y_p, y_t)

Sure, scikit-learn already does have ClassifierChain [https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.ClassifierChain.html#sklearn.multioutput.ClassifierChain] and
RegressorChain [https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.RegressorChain.html#sklearn.multioutput.RegressorChain] classes for this. But with baikal you could,
for example, mix classifiers and regressors to predict multilabels that include both
categorical and continuous labels.

import numpy as np
import random

import sklearn.linear_model
from sklearn.datasets import fetch_openml
from sklearn.metrics import jaccard_score
from sklearn.model_selection import train_test_split

from baikal import Input, Model, make_step
from baikal.plot import plot_model
from baikal.steps import ColumnStack, Split, Lambda

------- Define steps
LogisticRegression = make_step(sklearn.linear_model.LogisticRegression)

------- Load a multi-label dataset
(from https://www.openml.org/d/40597)
X, Y = fetch_openml("yeast", version=4, return_X_y=True)
Y = Y == "TRUE"
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)

n_targets = Y.shape[1]
random.seed(87)
order = list(range(n_targets))
random.shuffle(order)

------- Build model
x = Input()
y_t = Input()

squeeze = Lambda(np.squeeze, axis=1)

ys_t = Split(n_targets, axis=1)(y_t)
ys_p = []
for j, k in enumerate(order):
 x_stacked = ColumnStack()(inputs=[x, *ys_p[:j]])
 ys_t[k] = squeeze(ys_t[k])
 ys_p.append(LogisticRegression(solver="lbfgs")(x_stacked, ys_t[k]))

ys_p = [ys_p[order.index(j)] for j in range(n_targets)]
y_p = ColumnStack()(ys_p)

model = Model(inputs=x, outputs=y_p, targets=y_t)
This might take a few seconds
plot_model(model, filename="classifier_chain.png", dpi=96)

------- Train model
model.fit(X_train, Y_train)

------- Evaluate model
Y_train_pred = model.predict(X_train)
Y_test_pred = model.predict(X_test)

print(
 "Jaccard score on train data:",
 jaccard_score(Y_train, Y_train_pred, average="samples"),
)
print(
 "Jaccard score on test data:",
 jaccard_score(Y_test, Y_test_pred, average="samples"),
)

Transformed target

You can also call steps on the targets to apply transformations on them. Note that by
making the transformer a shared step, you can re-use learned parameters to apply the
inverse transform later in the pipeline.

transformer = QuantileTransformer(n_quantiles=300, output_distribution="normal")

x = Input()
y_t = Input()
QuantileTransformer requires an explicit feature dimension, hence the Lambda step
y_t_trans = Lambda(np.reshape, newshape=(-1, 1))(y_t)
y_t_trans = transformer(y_t_trans)
y_p_trans = RidgeCV()(x, y_t_trans)
y_p = transformer(y_p_trans, compute_func="inverse_transform", trainable=False)
Note that transformer is a shared step since it was called twice

model = Model(x, y_p, y_t)

Adapted from the scikit-learn example in:
https://scikit-learn.org/stable/auto_examples/compose/plot_transformed_target.html#sphx-glr-auto-examples-compose-plot-transformed-target-py

import numpy as np
import sklearn.linear_model
import sklearn.preprocessing
from sklearn.datasets import load_boston
from sklearn.metrics import median_absolute_error, r2_score
from sklearn.model_selection import train_test_split

from baikal import make_step, Input, Model
from baikal.plot import plot_model
from baikal.steps import Lambda

------- Define steps
RidgeCV = make_step(sklearn.linear_model.RidgeCV)
QuantileTransformer = make_step(sklearn.preprocessing.QuantileTransformer)

------- Load dataset
dataset = load_boston()
target = np.array(dataset.feature_names) == "DIS"
X = dataset.data[:, np.logical_not(target)]
y = dataset.data[:, target].squeeze()
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

------- Build model
transformer = QuantileTransformer(n_quantiles=300, output_distribution="normal")

x = Input()
y_t = Input()
QuantileTransformer requires an explicit feature dimension, hence the Lambda step
y_t_trans = Lambda(np.reshape, newshape=(-1, 1))(y_t)
y_t_trans = transformer(y_t_trans)
y_p_trans = RidgeCV()(x, y_t_trans)
y_p = transformer(y_p_trans, compute_func="inverse_transform", trainable=False)

model = Model(x, y_p, y_t)
plot_model(model, filename="transformed_target.png", dpi=96)

------- Train model
model.fit(X_train, y_train)

------- Evaluate model
y_pred = model.predict(X_test)

r2 = r2_score(y_test, y_pred)
mae = median_absolute_error(y_test, y_pred)
print("R^2={}\nMAE={}".format(r2, mae))

Tune a model with GridSearchCV

Below is an example showing how to use the scikit-learn wrapper to tune the parameters
of a baikal model using GridSearchCV.

import sklearn.decomposition
import sklearn.ensemble
import sklearn.decomposition
import sklearn.linear_model
from sklearn import datasets
from sklearn.model_selection import GridSearchCV, StratifiedKFold

from baikal import Input, Model, make_step
from baikal.sklearn import SKLearnWrapper

LogisticRegression = make_step(sklearn.linear_model.LogisticRegression)
RandomForestClassifier = make_step(sklearn.ensemble.RandomForestClassifier)
PCA = make_step(sklearn.decomposition.PCA)

def build_fn():
 x = Input()
 y_t = Input()
 h = PCA(random_state=random_state, name="pca")(x)
 y_p = LogisticRegression(random_state=random_state, name="classifier")(h, y_t)
 model = Model(x, y_p, y_t)
 return model

iris = datasets.load_iris()
x_data = iris.data
y_data = iris.target
random_state = 123
verbose = 0

cv will default to KFold if the estimator is a baikal Model
so we have to pass StratifiedKFold directly
cv = StratifiedKFold(n_splits=3, random_state=random_state)

param_grid = [
 {
 "classifier": [
 LogisticRegression(
 random_state=random_state, solver="lbfgs", multi_class="multinomial"
)
],
 "classifier__C": [0.01, 0.1, 1],
 "pca__n_components": [1, 2, 3, 4],
 },
 {
 "classifier": [RandomForestClassifier(random_state=random_state)],
 "classifier__n_estimators": [10, 50, 100],
 "pca__n_components": [1, 2, 3, 4],
 },
]

sk_model = SKLearnWrapper(build_fn)
gscv_baikal = GridSearchCV(
 sk_model,
 param_grid,
 cv=cv,
 scoring="accuracy",
 return_train_score=True,
 verbose=verbose,
)
gscv_baikal.fit(x_data, y_data)
print("Best score:", gscv_baikal.best_score_)
print("Best parameters", gscv_baikal.best_params_)
The model with the best parameters can be accessed via:
gscv_baikal.best_estimator_.model

API Reference

This is the class and function reference of baikal.

Core classes

	Step

	Mixin class to endow scikit-learn classes with Step capabilities.

	Model

	A Model is a network (more precisely, a directed acyclic graph) of Steps, and it is defined from the input/output specification of the pipeline.

Steps

	Lambda

	Step for arbitrary functions.

	ColumnStack

	Step for stacking arrays along the columns.

	Concatenate

	Step for concatenating arrays.

	Split

	Step for splitting arrays.

	Stack

	Step for stacking arrays.

Utilities

	make_step(base_class[, attr_dict])

	Creates a step subclass from the given base class.

	plot_model

	

	SKLearnWrapper(build_fn, **params)

	Wrapper utility class that allows models to used in scikit-learn’s GridSearchCV API.

Step

	
class baikal.Step(*args, name=None, n_outputs=1, **kwargs)

	Bases: baikal._core.step._StepBase

Mixin class to endow scikit-learn classes with Step capabilities.

Steps are defined by combining any class we would like to make a step from
with this mixin class. This mixin, among other things, endows the class of
interest with a __call__ method, making the class callable on the outputs
(DataPlaceholder objects) of previous steps and optional targets (also
DataPlaceholder objects). You can make a step from any class you like,
so long that class implements the scikit-learn API.

	Instructions:
	
	Define a class that inherits from both this mixin and the class you
wish to make a step of (in that order!).

	In the class __init__, call super().__init__(...) and pass the
appropriate step parameters.

The base class may implement a predict/transform method (the compute function)
that take multiple inputs and returns multiple outputs, and a fit method that
takes multiple inputs and targets. In this case, the input/target arguments are
expected to be a list of (typically) array-like objects, and the compute function
is expected to return a list of array-like objects.

	Parameters

	
	name – Name of the step (optional). If no name is passed, a name will be
automatically generated.

	n_outputs – The number of outputs of the step’s function (predict, transform, or
any other callable passed in the compute_func argument).

Examples

import sklearn.linear_model
The order of inheritance is important!
class LogisticRegression(Step, sklearn.linear_model.LogisticRegression):
 def __init__(self, name=None, **kwargs):
 super().__init__(name=name, **kwargs)

logreg = LogisticRegression(C=2.0)

Methods

	get_compute_func_at(port)

	Get compute function at the specified port.

	get_fit_compute_func_at(port)

	Get fit-compute function at the specified port.

	get_inputs_at(port)

	Get inputs at the specified port.

	get_outputs_at(port)

	Get outputs at the specified port.

	get_targets_at(port)

	Get targets at the specified port.

	get_trainable_at(port)

	Get trainable flag at the specified port.

	set_compute_func_at(port, value)

	Set compute function at the specified port.

	set_fit_compute_func_at(port, value)

	Set fit-compute function at the specified port.

	set_trainable_at(port, value)

	Set trainable flag at the specified port.

	__call__(inputs[, targets, compute_func, …])

	Call the step on input(s) (from previous steps) and generates the output(s) to be used in further steps.

Attributes

	compute_func

	Get the compute function of the step.

	fit_compute_func

	Get the fit-compute function of the step.

	inputs

	Get the inputs of the step.

	n_outputs

	Get the number of outputs the step produces.

	name

	Get the name of the step.

	outputs

	Get the outputs of the step.

	targets

	Get the targets of the step.

	trainable

	Get trainable flag of the step.

baikal.Step.get_compute_func_at

	
Step.get_compute_func_at(port)

	Get compute function at the specified port.

	Parameters

	port – Port from which to get the compute function.

	Returns

	Callable

baikal.Step.get_fit_compute_func_at

	
Step.get_fit_compute_func_at(port)

	Get fit-compute function at the specified port.

	Parameters

	port – Port from which to get the fit-compute function.

	Returns

	Callable or None

baikal.Step.get_inputs_at

	
Step.get_inputs_at(port)

	Get inputs at the specified port.

	Parameters

	port – Port from which to get the inputs.

	Returns

	List of inputs.

baikal.Step.get_outputs_at

	
Step.get_outputs_at(port)

	Get outputs at the specified port.

	Parameters

	port – Port from which to get the outputs.

	Returns

	List of outputs.

baikal.Step.get_targets_at

	
Step.get_targets_at(port)

	Get targets at the specified port.

	Parameters

	port – Port from which to get the targets.

	Returns

	List of targets.

baikal.Step.get_trainable_at

	
Step.get_trainable_at(port)

	Get trainable flag at the specified port.

	Parameters

	port – Port from which to get the trainable flag.

	Returns

	bool

baikal.Step.set_compute_func_at

	
Step.set_compute_func_at(port, value)

	Set compute function at the specified port.

	Parameters

	
	port – Port on which to set the compute function.

	value – Compute function of the step.

baikal.Step.set_fit_compute_func_at

	
Step.set_fit_compute_func_at(port, value)

	Set fit-compute function at the specified port.

	Parameters

	
	port – Port on which to set the fit-compute function.

	value – fit-compute function of the step. Pass None to disable it.

baikal.Step.set_trainable_at

	
Step.set_trainable_at(port, value)

	Set trainable flag at the specified port.

	Parameters

	
	port – Port on which to set the trainable flag.

	value – Trainable flag.

baikal.Step.__call__

	
Step.__call__(inputs, targets=None, *, compute_func='auto', fit_compute_func='auto', trainable=True)

	Call the step on input(s) (from previous steps) and generates the
output(s) to be used in further steps.

You can call the same step on different inputs and targets to reuse the step
(similar to the concept of shared layers and nodes in Keras), and specify a
different compute_func/trainable configuration on each call. This is
achieved via “ports”: each call creates a new port and associates the given
configuration to it. You may access the configuration at each port using the
get_*_at(port) methods.

	Parameters

	
	inputs – Input(s) to the step.

	targets – Target(s) to the step.

	compute_func – Specifies which function must be used when computing the step during
the model graph execution. If "auto" (default), it will use the predict
or the transform method (in that order). If a name string is passed,
it will use the method that matches the given name. If a callable is
passed, it will use that callable when computing the step.

The number of inputs and outputs of the function must match those of the
step (this is not checked, but will raise an error during graph
execution if there is a mismatch).

scikit-learn classes typically implement a predict method (Estimators)
or a transform method (Transformers), but with this argument you can,
for example, specify predict_proba as the compute function.

	fit_compute_func – Specifies which function must be used when fitting AND computing the step
during the model graph execution.

If "auto" (default), it will use the fit_predict or the fit_transform
method (in that order) if they are implemented, otherwise it will be
disabled. If a name string is passed, it will use the method that matches
the given name. If a callable is passed, it will use that callable when
fitting the step. If None is passed it will be ignored during graph
execution.

The number of inputs, outputs and targets, of the function must match those
of the step (this is not checked, but will raise an error during graph
execution if there is a mismatch).

By default, when a model is fit, the graph engine will for each step
1) execute fit to fit the step, and then 2) execute compute_func to
compute the outputs required by successor steps. If a step specifies a
fit_compute_func, the graph execution will use that instead to fit and
compute the outputs in a single call. This can be useful for

	leveraging implementations of fit_transform that are more efficient
than calling fit and transform separately,

	using transductive estimators,

	implementing training protocols such as that of stacked classifiers,
where the classifier in the first stage might compute out-of-fold
predictions.

	trainable – Whether the step is trainable (True) or not (False). This flag is only
meaningful only for steps with a fit method. Setting trainable=False
allows to skip the step when fitting a Model. This is useful if you
want to freeze some pre-trained steps.

	Returns

	DataPlaceholder – Output(s) of the step.

Model

	
class baikal.Model(inputs, outputs, targets=None, name=None)

	Bases: baikal._core.step.Step

A Model is a network (more precisely, a directed acyclic graph) of Steps,
and it is defined from the input/output specification of the pipeline.
Models have fit and predict routines that, together with graph-based engine,
allow the automatic (feed-forward) computation of each of the pipeline steps
when fed with data.

	Parameters

	
	inputs – Inputs to the model.

	outputs – Outputs of the model.

	targets – Targets of the model.

	name – Name of the model (optional). If no name is passed, a name will be
automatically generated.

Methods

	fit(X[, y])

	Trains the model on the given input and target data.

	get_compute_func_at(port)

	Get compute function at the specified port.

	get_data_placeholder(name)

	Get a data placeholder (graph half-edge) in the model by name.

	get_fit_compute_func_at(port)

	Get fit-compute function at the specified port.

	get_inputs_at(port)

	Get inputs at the specified port.

	get_outputs_at(port)

	Get outputs at the specified port.

	get_params([deep])

	Get the parameters of the model.

	get_step(name)

	Get a step (graph node) in the model by name.

	get_targets_at(port)

	Get targets at the specified port.

	get_trainable_at(port)

	Get trainable flag at the specified port.

	predict(X[, output_names])

	Predict by applying the model on the given input data.

	set_compute_func_at(port, value)

	Set compute function at the specified port.

	set_fit_compute_func_at(port, value)

	Set fit-compute function at the specified port.

	set_params(**params)

	Set the parameters of the model.

	set_trainable_at(port, value)

	Set trainable flag at the specified port.

	__call__(inputs[, targets, compute_func, …])

	Call the step on input(s) (from previous steps) and generates the output(s) to be used in further steps.

Attributes

	compute_func

	Get the compute function of the step.

	fit_compute_func

	Get the fit-compute function of the step.

	graph

	Get the graph associated to the model.

	inputs

	Get the inputs of the step.

	n_outputs

	Get the number of outputs the step produces.

	name

	Get the name of the step.

	outputs

	Get the outputs of the step.

	targets

	Get the targets of the step.

	trainable

	Get trainable flag of the step.

baikal.Model.fit

	
Model.fit(X, y=None, **fit_params)

	Trains the model on the given input and target data.

The model will automatically propagate the data through the pipeline and
fit any internal steps that require training.

	Parameters

	
	X – Input data (independent variables). It can be either of:

	A single array-like object (in the case of a single input)

	A list of array-like objects (in the case of multiple inputs)

	A dictionary mapping DataPlaceholders (or their names) to
array-like objects. The keys must be among the inputs passed
at instantiation.

	y – Target data (dependent variables) (optional). It can be either of:

	None (in the case all steps are either non-trainable and/or
unsupervised learning steps)

	A single array-like object (in the case of a single target)

	A list of array-like objects(in the case of multiple targets)

	A dictionary mapping target DataPlaceholders (or their names) to
array-like objects. The keys must be among the targets passed
at instantiation.

Targets required by steps that were set as non-trainable might
be omitted.

	fit_params – Parameters passed to the fit method of each model step, where each
parameter name has the form <step-name>__<parameter-name>.

baikal.Model.get_compute_func_at

	
Model.get_compute_func_at(port)

	Get compute function at the specified port.

	Parameters

	port – Port from which to get the compute function.

	Returns

	Callable

baikal.Model.get_data_placeholder

	
Model.get_data_placeholder(name)

	Get a data placeholder (graph half-edge) in the model by name.

	Parameters

	name – Name of the data placeholder.

	Returns

	The data placeholder.

baikal.Model.get_fit_compute_func_at

	
Model.get_fit_compute_func_at(port)

	Get fit-compute function at the specified port.

	Parameters

	port – Port from which to get the fit-compute function.

	Returns

	Callable or None

baikal.Model.get_inputs_at

	
Model.get_inputs_at(port)

	Get inputs at the specified port.

	Parameters

	port – Port from which to get the inputs.

	Returns

	List of inputs.

baikal.Model.get_outputs_at

	
Model.get_outputs_at(port)

	Get outputs at the specified port.

	Parameters

	port – Port from which to get the outputs.

	Returns

	List of outputs.

baikal.Model.get_params

	
Model.get_params(deep=True)

	Get the parameters of the model.

	Parameters

	deep – Get the parameters of any nested models.

	Returns

	params – Parameter names mapped to their values.

baikal.Model.get_step

	
Model.get_step(name)

	Get a step (graph node) in the model by name.

	Parameters

	name – Name of the step.

	Returns

	The step.

baikal.Model.get_targets_at

	
Model.get_targets_at(port)

	Get targets at the specified port.

	Parameters

	port – Port from which to get the targets.

	Returns

	List of targets.

baikal.Model.get_trainable_at

	
Model.get_trainable_at(port)

	Get trainable flag at the specified port.

	Parameters

	port – Port from which to get the trainable flag.

	Returns

	bool

baikal.Model.predict

	
Model.predict(X, output_names=None)

	Predict by applying the model on the given input data.

	Parameters

	
	X – Input data. It follows the same format as in the fit method.

	output_names – Names of required outputs (optional). You can specify any final or
intermediate output by passing the name of its associated data
placeholder. This is useful for debugging. If not specified, it will
return the outputs specified at instantiation.

	Returns

	array-like or list of array-like – The computed outputs.

baikal.Model.set_compute_func_at

	
Model.set_compute_func_at(port, value)

	Set compute function at the specified port.

	Parameters

	
	port – Port on which to set the compute function.

	value – Compute function of the step.

baikal.Model.set_fit_compute_func_at

	
Model.set_fit_compute_func_at(port, value)

	Set fit-compute function at the specified port.

	Parameters

	
	port – Port on which to set the fit-compute function.

	value – fit-compute function of the step. Pass None to disable it.

baikal.Model.set_params

	
Model.set_params(**params)

	Set the parameters of the model.

	Parameters

	params – Dictionary mapping parameter names to their values. Valid parameter
of the form <step-name>__<parameter-name>). Entire steps can
be replaced with <step-name> keys.

When replacing a step, the new step will adopt the input/output/targets
connectivity of the replaced step, including its name, trainable
flag and compute function. Note that if the compute function is a method
the new step must implement it too.

Valid parameter keys can be listed with get_params().

	Returns

	self

baikal.Model.set_trainable_at

	
Model.set_trainable_at(port, value)

	Set trainable flag at the specified port.

	Parameters

	
	port – Port on which to set the trainable flag.

	value – Trainable flag.

baikal.Model.__call__

	
Model.__call__(inputs, targets=None, *, compute_func='auto', fit_compute_func='auto', trainable=True)

	Call the step on input(s) (from previous steps) and generates the
output(s) to be used in further steps.

You can call the same step on different inputs and targets to reuse the step
(similar to the concept of shared layers and nodes in Keras), and specify a
different compute_func/trainable configuration on each call. This is
achieved via “ports”: each call creates a new port and associates the given
configuration to it. You may access the configuration at each port using the
get_*_at(port) methods.

	Parameters

	
	inputs – Input(s) to the step.

	targets – Target(s) to the step.

	compute_func – Specifies which function must be used when computing the step during
the model graph execution. If "auto" (default), it will use the predict
or the transform method (in that order). If a name string is passed,
it will use the method that matches the given name. If a callable is
passed, it will use that callable when computing the step.

The number of inputs and outputs of the function must match those of the
step (this is not checked, but will raise an error during graph
execution if there is a mismatch).

scikit-learn classes typically implement a predict method (Estimators)
or a transform method (Transformers), but with this argument you can,
for example, specify predict_proba as the compute function.

	fit_compute_func – Specifies which function must be used when fitting AND computing the step
during the model graph execution.

If "auto" (default), it will use the fit_predict or the fit_transform
method (in that order) if they are implemented, otherwise it will be
disabled. If a name string is passed, it will use the method that matches
the given name. If a callable is passed, it will use that callable when
fitting the step. If None is passed it will be ignored during graph
execution.

The number of inputs, outputs and targets, of the function must match those
of the step (this is not checked, but will raise an error during graph
execution if there is a mismatch).

By default, when a model is fit, the graph engine will for each step
1) execute fit to fit the step, and then 2) execute compute_func to
compute the outputs required by successor steps. If a step specifies a
fit_compute_func, the graph execution will use that instead to fit and
compute the outputs in a single call. This can be useful for

	leveraging implementations of fit_transform that are more efficient
than calling fit and transform separately,

	using transductive estimators,

	implementing training protocols such as that of stacked classifiers,
where the classifier in the first stage might compute out-of-fold
predictions.

	trainable – Whether the step is trainable (True) or not (False). This flag is only
meaningful only for steps with a fit method. Setting trainable=False
allows to skip the step when fitting a Model. This is useful if you
want to freeze some pre-trained steps.

	Returns

	DataPlaceholder – Output(s) of the step.

Lambda

	
class baikal.steps.Lambda(compute_func, n_outputs=1, name=None, **kwargs)

	Bases: baikal._core.step.Step

Step for arbitrary functions.

	Parameters

	
	compute_func – The function to make the step from. This function a single array-like object
(in the case of a single input) or a list of array-like objects (in the case of
multiple inputs) If compute_func takes additional arguments you may either pass
them as keyword arguments or use a functools.partial object.

	n_outputs – Number of outputs of the function.

	name – Name of the step (optional). If no name is passed, a name will be
automatically generated.

	**kwargs – Additional arguments to compute_func.

Examples

def function(Xs):
 x1, x2 = Xs
 return 2 * x1, x2 / 2

x = Input()
y1, y2 = Lambda(function, n_outputs=2)([x, x])
model = Model(x, [y1, y2])

x_data = np.array([[1.0, 2.0],
 [3.0, 4.0]])

y1_pred, y2_pred = model.predict(x_data)

print(y1_pred)
[[2. 4.]
[6. 8.]]

print(y2_pred)
[[0.5 1.]
[1.5 2.]]

ColumnStack

	
class baikal.steps.ColumnStack(name=None)

	Bases: baikal._core.step.Step

Step for stacking arrays along the columns.

	Parameters

	name – Name of the step (optional). If no name is passed, a name will be
automatically generated.

Concatenate

	
class baikal.steps.Concatenate(axis=-1, name=None)

	Bases: baikal._core.step.Step

Step for concatenating arrays.

	Parameters

	
	axis – The axis of concatenation (default is -1, the last axis).

	name – Name of the step (optional). If no name is passed, a name will be
automatically generated.

Split

	
class baikal.steps.Split(indices_or_sections, axis=-1, name=None)

	Bases: baikal._core.step.Step

Step for splitting arrays.

	Parameters

	
	indices_or_sections – If an integer (N) is passed, the array will be divided into N equal arrays along
axis. If an 1-D array of sorted integers is passed, the entries indicate where
along axis the array is split.

	axis – The axis on where to split the array (default is -1, the last axis).

	name – Name of the step (optional). If no name is passed, a name will be
automatically generated.

Stack

	
class baikal.steps.Stack(axis=-1, name=None)

	Bases: baikal._core.step.Step

Step for stacking arrays.

	Parameters

	
	axis – The axis parameter specifies the index of the new axis in the dimensions of
the result (default is -1).

	name – Name of the step (optional). If no name is passed, a name will be
automatically generated.

baikal.steps.make_step

	
baikal.steps.make_step(base_class, attr_dict=None)

	Creates a step subclass from the given base class.

For example, calling:

PCA = make_step(sklearn.decomposition.PCA)

is equivalent to:

class PCA(Step, sklearn.decomposition.PCA):
 def __init__(self, name=None, n_outputs=1, **kwargs):
 super().__init__(name=name, n_outputs=n_outputs, **kwargs)

	Parameters

	
	base_class (type) – The base class to inherit from. It must implement the scikit-learn API.

	attr_dict (dict) – Dictionary of additional attributes for the class. You can use this to add
methods such as fit_compute to the class. (keys: name of attribute (str),
values: attributes).

	Returns

	step_subclass (type) – A new class that inherits from both Step and the given base class and has the
the specified attributes.

SKLearnWrapper

	
class baikal.sklearn.SKLearnWrapper(build_fn, **params)

	Bases: object

Wrapper utility class that allows models to used in scikit-learn’s
GridSearchCV API. It follows the style of Keras’ own wrapper.

A future release of baikal plans to remove this class and instead
include a custom GridSearchCV API, based on the original scikit-learn
implementation, that can handle baikal models natively.

	Parameters

	
	build_fn – A function that takes no arguments and builds and returns a baikal Model.

Note that, in order to specify which parameters of which steps to tune
using a dictionary keyed by <step>__<parameter>, you must pass a
name to the appropriate steps when building the model in this function.

	params – Dictionary mapping parameter names to their values. Valid parameter
names are ‘build_fn’ and any parameter the wrapped model can take
(in the form <step>__<parameter>).

Methods

	fit(X[, y])

	Fit wrapped model.

	get_params([deep])

	Get parameters for this estimator.

	predict(X)

	Predict with the wrapped model.

	set_params(**params)

	Set the parameters of this estimator.

Attributes

	model

	Get the wrapped model.

baikal.sklearn.SKLearnWrapper.fit

	
SKLearnWrapper.fit(X, y=None, **fit_params)

	Fit wrapped model.

	Parameters

	
	X – Input data to the model.

	y – Target data to the model.

	fit_params – Parameters passed to the fit method of each model step, where each
parameter name has the form <step-name>__<parameter-name>.

	Returns

	self

baikal.sklearn.SKLearnWrapper.get_params

	
SKLearnWrapper.get_params(deep=True)

	Get parameters for this estimator.

	Parameters

	deep – Unused. Kept for API compatibility purposes. It will always include
any nested params.

	Returns

	params – Parameter names mapped to their values.

baikal.sklearn.SKLearnWrapper.predict

	
SKLearnWrapper.predict(X)

	Predict with the wrapped model.

	Parameters

	X – Input data to the model.

	Returns

	Model predictions.

Notes

outputs argument is currently unsupported.

baikal.sklearn.SKLearnWrapper.set_params

	
SKLearnWrapper.set_params(**params)

	Set the parameters of this estimator.

	Parameters

	params – Dictionary mapping parameter names to their values. Valid parameter
names are ‘build_fn’ and any parameter the wrapped model can take
(in the form <step-name>__<parameter-name>).

	Returns

	self

Contributing guidelines

Bug reports and fixes are always welcome!

Contributions to extend/refactor/improve/document the API are also welcome! baikal
is currently a one-man operation, and it could benefit from more minds and hands working
on it :)

If you would like to contribute to the project (thank you!), please follow the guidelines
below.

Bug reports

	Check if the bug happens in master. If the bug persists, then

	Check the issues page to see if the issue has been reported, solved or closed before.
Make sure to remove the is:open qualifier so that closed issues are also visible.
If the bug is indeed new, then

	Open a new issue and provide a brief explanation of the bug describing the expected and
the actual behavior, and add a code sample to reproduce it. Please refer to the template
provided when clicking the “New issue” button.

	If possible, try to fix it and submit a PR yourself :)

Feature requests

	Check in the issues page if a similar idea has already been proposed. If it hasn’t, then

	Open an issue describing the feature and why it would be useful and important to have.
The feature must be accompanied with a code snippet showing how the feature would be
used. Please refer to the template provided when clicking the “New issue” button.

	Make a case for your proposal and address any questions/comments/suggestions.

	If the feature is accepted, you may go ahead and submit a PR.

baikal’s goal is to make building complex machine learning pipelines easier, so a good
API feature has (ideally all) the following traits:

	makes a task easier,

	is of general use,

	is intuitive,

	is hard to use incorrectly,

	makes code more readable.

Submitting a pull request

	Scope: A PR must address one issue (unless the same solution fixes two or more
issues of course) and should be decoupled from any other proposed changes as much as
possible. If the PR involves several changes, it might be more appropriate to split it
into several PRs, as several PRs are easier to review/understand/backport/revert than
one huge PR. Please add a reference to the related issue in the description (e.g.
Fixes #123, Implements #456), this will close the issue automatically when the PR
is merged.

	Tests: Existing tests must pass and no line should be left uncovered. If the
PR fixes a bug, it should also add a test covering the case where the bug happens. If
the PR introduces a new feature, it should add the appropriate tests confirming the
correct functioning of the feature. Remember that the reported coverage is only line and
branch coverage. If possible, go the extra mile and devise tests that cover more complex
yet important interactions of multiple conditions. For a new API feature, usually the
feature use cases can also serve as the test cases, so you might be able to shoot two
birds with one stone!

	Code format: This project adopts the black code format. Make sure to setup the
pre-commit hook before committing any changes.

	Commits: Commits, like PRs, should be granular and decoupled from each other.
Ideally, the PR’s commit history tells a story: the reviewer should be able to easily
grasp what changes were made when glancing at the commit history. Please add descriptive
commit messages and avoid cryptic messages like Some refactoring or More fixes. When
writing a commit message, usually the why is more important than the what (one
can check the diff for that), so try to explain the reasons for that change. Remember:
the audience of a commit message is another developer in the future (including your future
self) that might need to understand the reasons why and the context where the changes
happened.

	Documentation: Any changes must be accompanied by the appropriate documentation, if
applicable. This might include adding or revising the docstrings, updating the user
guide, or adding an example.

	Changelog: Please update the Changelog appropriately.

	License: by submitting a pull request to the project, you’re offering your changes
under this project’s license.

Setting up the development environment

	Clone the project.

	From the project root folder run: make setup_dev.

	This will create a virtualenv and install the package in development mode.

	It will also install a pre-commit hook for the black code formatter.

	You need Python 3.5 or above.

	To run the tests use: make test, or make test-cov to include coverage.

	The tests include a test for the plot utility, so you need to install graphviz.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/].

[0.3.1] - 2020-04-26

Fixed

	Fix bug where get_params would break when the base class did not implement
an __init__ method ([PR #32]).

0.3.0 [https://github.com/alegonz/baikal/compare/v0.2.0...v0.3.0] - 2020-02-23

Added

	Add support for shared steps (PR #19 [https://github.com/alegonz/baikal/pull/19]).
Now steps can be called several times on different inputs.

	This is a backwards-incompatible change. The outputs of the steps now follow
the following format: step_name:port/output_number.
(Previously it was step_name/output_number)

	Add option to include targets in plot_model (PR #20 [https://github.com/alegonz/baikal/pull/20]).

	Add new fit_compute_func argument to Step.__call__ that allows to specify custom
behavior at fit time (PR #22 [https://github.com/alegonz/baikal/pull/22]).

	Add documentation built with Sphinx and hosted on baikal.readthedocs.io [https://baikal.readthedocs.io/en/latest]
(PR #29 [https://github.com/alegonz/baikal/pull/29]).

Changed

	Move compute_func (previously function) and trainable args to Step.__call__
(PR #18 [https://github.com/alegonz/baikal/pull/18]).

	Also, the default value is changed from None to "auto".

	This is a backwards-incompatible change.

	Raise RuntimeError chained with the original exception in Model.fit and Model.predict.

Fixed

	Add clarification in that steps must be named in build_fn when using SKLearnWrapper

	Fix bug where the compute function was not being transferred when replacing a step in Model.set_params.

	Fix an API inconsistency regarding the handling of the arguments of fit/compute for
steps with multiple inputs and targets (PR #21 [https://github.com/alegonz/baikal/pull/21]).

	Fix several bugs in plot_model (it was largely broken)
(PR #20 [https://github.com/alegonz/baikal/pull/20], PR #24 [https://github.com/alegonz/baikal/pull/24]).

0.2.0 [https://github.com/alegonz/baikal/compare/v0.1.0...v0.2.0] - 2019-11-16

Added

	This CHANGELOG file.

	Introduced new targets API (PR #1 [https://github.com/alegonz/baikal/pull/1]).

	Steps now take an optional targets argument at call time to specify inputs for
target data at fit time.

	Correspondingly, Model also takes an additional argument for these targets.

	The extra_targets argument in Model.fit was removed.

	Step enhancements

	make_step factory function to ease definition of steps.

	Added support for function arguments to Lambda step (PR #8 [https://github.com/alegonz/baikal/pull/8]).

	Added new Split step (PR #9 [https://github.com/alegonz/baikal/pull/9]).

Fixed

	Some refactoring and minor fixes.

	Bug fixes (PR #6 [https://github.com/alegonz/baikal/pull/6], PR #7 [https://github.com/alegonz/baikal/pull/7])

0.1.0 [https://github.com/alegonz/baikal/releases/tag/v0.1.0] - 2019-06-01

Added

	Everything. This is the first (pre-release) version.

License

BSD 3-Clause License

Copyright (c) 2019-2020, Alejandro González Tineo
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
 contributors may be used to endorse or promote products derived from
 this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 b

 		 	

 		
 b	

 	
 	
 baikal	

Index

 _
 | B
 | C
 | F
 | G
 | L
 | M
 | P
 | S

_

 	
 	__call__() (baikal.Model method)

 	(baikal.Step method)

B

 	
 	baikal (module)

C

 	
 	ColumnStack (class in baikal.steps)

 	
 	Concatenate (class in baikal.steps)

F

 	
 	fit() (baikal.Model method)

 	(baikal.sklearn.SKLearnWrapper method)

G

 	
 	get_compute_func_at() (baikal.Model method)

 	(baikal.Step method)

 	get_data_placeholder() (baikal.Model method)

 	get_fit_compute_func_at() (baikal.Model method)

 	(baikal.Step method)

 	get_inputs_at() (baikal.Model method)

 	(baikal.Step method)

 	get_outputs_at() (baikal.Model method)

 	(baikal.Step method)

 	
 	get_params() (baikal.Model method)

 	(baikal.sklearn.SKLearnWrapper method)

 	get_step() (baikal.Model method)

 	get_targets_at() (baikal.Model method)

 	(baikal.Step method)

 	get_trainable_at() (baikal.Model method)

 	(baikal.Step method)

L

 	
 	Lambda (class in baikal.steps)

M

 	
 	make_step() (in module baikal.steps)

 	
 	Model (class in baikal)

P

 	
 	predict() (baikal.Model method)

 	(baikal.sklearn.SKLearnWrapper method)

S

 	
 	set_compute_func_at() (baikal.Model method)

 	(baikal.Step method)

 	set_fit_compute_func_at() (baikal.Model method)

 	(baikal.Step method)

 	set_params() (baikal.Model method)

 	(baikal.sklearn.SKLearnWrapper method)

 	
 	set_trainable_at() (baikal.Model method)

 	(baikal.Step method)

 	SKLearnWrapper (class in baikal.sklearn)

 	Split (class in baikal.steps)

 	Stack (class in baikal.steps)

 	Step (class in baikal)

 _images/baikal1_blue.png
Sbaikal

_images/multiple_input_nonlinear_pipeline_example_diagram.png
y_t (target)

x1 (input) X2 (input)
PowerTransform
i
PCA
i 1 1
ExtraTreesClassifier RandomForest LogisticRegression

Stack

Ve

sve

1
y (output)

_images/multiple_input_nonlinear_pipeline_example_plot.png
PowerTransformer_0:0

x2 PowerTransformer_0:0/0
vt PCA_0:0
vt _t \PCA_0:00 yt 1

RandomForestClassifier_0:0 LogisticRegression_0:0 ExtraTreesClassifier_0:0

y_t RandomForestClassifier_0:0/0 /LogisticRegression_0:0/0 /ExtraTreesClassifier_0:0/0

Stack_0:0

tack_0:0/0

SVC_0:0

VC_0:0/0

_static/baikal0_white_tight.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 A graph-based functional API for building complex scikit-learn pipelines

 		
 Installation

 		
 Requirements

 		
 User guide

 		
 Key concepts

 		
 Quick-start guide

 		
 API walkthrough

 		
 1. Define the steps

 		
 2. Build the model

 		
 3. Train the model

 		
 4. Use the model

 		
 Generalizations introduced by the API

 		
 Utilities

 		
 Persisting the model

 		
 scikit-learn wrapper for GridSearchCV

 		
 Plotting your model

 		
 Examples

 		
 Stacked classifiers (naive protocol)

 		
 Stacked classifiers (standard protocol)

 		
 Classifier chain

 		
 Transformed target

 		
 Tune a model with GridSearchCV

 		
 API Reference

 		
 Step

 		
 baikal.Step.get_compute_func_at

 		
 baikal.Step.get_fit_compute_func_at

 		
 baikal.Step.get_inputs_at

 		
 baikal.Step.get_outputs_at

 		
 baikal.Step.get_targets_at

 		
 baikal.Step.get_trainable_at

 		
 baikal.Step.set_compute_func_at

 		
 baikal.Step.set_fit_compute_func_at

 		
 baikal.Step.set_trainable_at

 		
 baikal.Step.__call__

 		
 Model

 		
 baikal.Model.fit

 		
 baikal.Model.get_compute_func_at

 		
 baikal.Model.get_data_placeholder

 		
 baikal.Model.get_fit_compute_func_at

 		
 baikal.Model.get_inputs_at

 		
 baikal.Model.get_outputs_at

 		
 baikal.Model.get_params

 		
 baikal.Model.get_step

 		
 baikal.Model.get_targets_at

 		
 baikal.Model.get_trainable_at

 		
 baikal.Model.predict

 		
 baikal.Model.set_compute_func_at

 		
 baikal.Model.set_fit_compute_func_at

 		
 baikal.Model.set_params

 		
 baikal.Model.set_trainable_at

 		
 baikal.Model.__call__

 		
 Lambda

 		
 ColumnStack

 		
 Concatenate

 		
 Split

 		
 Stack

 		
 baikal.steps.make_step

 		
 SKLearnWrapper

 		
 baikal.sklearn.SKLearnWrapper.fit

 		
 baikal.sklearn.SKLearnWrapper.get_params

 		
 baikal.sklearn.SKLearnWrapper.predict

 		
 baikal.sklearn.SKLearnWrapper.set_params

 		
 Contributing guidelines

 		
 Bug reports

 		
 Feature requests

 		
 Submitting a pull request

 		
 Setting up the development environment

 		
 Changelog

 		
 [0.3.1] - 2020-04-26

 		
 Fixed

 		
 0.3.0 - 2020-02-23

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.2.0 - 2019-11-16

 		
 Added

 		
 Fixed

 		
 0.1.0 - 2019-06-01

 		
 Added

 		
 License

_static/plus.png

